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Abstract 

The brake is an important safety device for all types of vehicles. Traditionally in calculations, 

aerodynamic and tire rolling resistant effects are neglected and thus the braking distance and 

stop time may be estimated by simplified equations. To obtain a more accurate result, the 

inclusion of all resistant forces is necessary. In this paper, low CG (center of gravity) vehicles 

such as recumbent bikes with no tip-over assumed are studied. It starts with the use of dynamic 

equilibrium to formulate a nonlinear dynamic equation. The coefficients representing full-brake, 

front-brake and rear-brake cases are then obtained. The closed-form solution for the velocity, 

stop time, and braking distance is then derived. Results for various cases are presented, as well 

as a file which can be used with programs such as Matlab in order to study the effect of the air 

drag coefficient, frontal area, rolling resistance, road gradient, and power consumption. 

Braking and Resistant Force Equilibrium 

As shown in Figure 1, the major external forces acting on a vehicle during braking are  

Fa, the aerodynamic force (drag; lift not considered) 

Fb, the tire braking force, front and rear (= Fbf + Fbr) 

Fr, the tire rolling resistance, front and rear (= Frf + Frr) 

Fi, the inertia force (linear; wheel inertia not considered) 

Fg, the gravitational force 

The dynamic equilibrium of the system along the longitudinal (x) direction can be written as 

Fi = Fa + Fb + Fr + Fg  (1) 

Sum the moments about the front wheel contact line (point A), the normal load on the rear wheel 

is 

   
      ( )         ̇      ( )

 
 (2a) 

Similarly, sum the moments about point B, the normal load on the front wheels is 

   
      ( )         ̇      ( )

 
 (2b) 

Define  as the peak coefficient of tire/road friction, N as the normal load on the wheel, Cs as the 
longitudinal stiffness of the tire during braking, and is as the skid. The braking force may be 

expressed as follows (Wong, 2008): 
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For the current study, it is assumed that the braking force is near its peak value such that the 

maximum braking effort may be obtained, i.e. 

Fbf
 = Wf

 (4a) 

Fbr
 = Wr

 (4b) 

Define m as the mass of bicycle plus the rider,  as the air density, C
D
 as the air drag coefficient, 

A
f
 as the frontal area, v as the forward velocity,   as the grade angle, g as the gravitational 

acceleration, and f
o
 and f

1 as the rolling resistance coefficients (f
1
 is usually very small but is 

included here for completeness). The air drag, rolling resistance, inertia and gravitational forces 

can be expressed in the following form (Gillespie, 1992; Wong, 2008): 

   


 
     

  (5a) 

Fr = (fo + f1v
2
)Wcos( ) (5b) 

      ̇    
  

  
  (5c) 

Fg = W sin( ) (5d) 

 

Differential Equation for Braking 

Summing all the forces along longitudinal (x) direction gives 

Figure 1: Force balance of a low CG tricycle during braking. 
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                          ( )    (6a) 

or 

                ( ) (6b) 

Substituting Eq. (5a-d) into Eq. (6b) results in 

   ̇  (        
 )    ( )    



 
     

       ( ) (7) 

Rearranging the above equation, a nonlinear equation describing the dynamic equilibrium can be 

written in the following form 

    ̇        
  (8) 

Where S
1
, S

2
 and S

3
 are functions of vehicle parameters, and are different for full-brake, front-

brake, and rear-brake cases. To facilitate integration, Eq. (8) is re-arranged as 

      
  

      
  (9) 

For the normal condition the full-brake case (with both front and rear brakes) is applied, the 

gross vehicle weight is used as the normal load, thus  

Fb
 =  Wcos( ) 

The coefficients S
1
, S

2
, and S

3
 are  

S
1
  = m (10a) 

S
2
  = W[cos( )  fo cos( )  sin( )] (10b) 

S
3
  = 



 
CDAf + f1Wcos( ) (10c) 

If only the front brake is applied, the front-wheel normal load stated in Eq. (2b) is used to 

determine the braking force, i.e. 

       
      ( )          ̇       ( )

  

This leads to 

    (  
 

 
) (11a) 
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   ( )]       ( )       ( )} (11b) 
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)        cos( ) (11c) 

If only the rear brake is applied, the rear-wheel load stated in Eq. (2a) is used to determine the 

braking force, we get  
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Then S
i
 becomes 
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Closed-form Solution 

Eq. (8) or Eq. (9) can be solved numerically or symbolically. Integrating Eq. (9) gives 

∫   
 

  

    ∫
 

       

 

  

   

The closed-form (symbolic) solution for the above equation is 

       
  

√    
[     (√

  

  
 )       (√

  

  
  )] (13) 

Where vo is the initial velocity at the initial time to. Assume to = 0, the equation can be simplified. 

And after rearrangement the velocity during braking becomes 

   √
  

  
   [     (√

  

  
  )  

√    

  
 ] (14) 

The stop time (ts) is obtained by setting the final velocity v = 0, i.e. 

      (√
  

  
  )  

√    

  
     (15) 

Rearranging the equation gives the stop time as follows 

    
  

√    
     (√

  

  
  ) (16) 

The braking distance (Sd) is obtained by integrating Eq. (14) 

   ∫    
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Denote       
  (√

  

  
  )  and    

√    

  
, the closed-form solution of braking distance 

becomes 

   √
  

  
∫    (      )
 

  
   (18) 

Define u = C
1
 – C

2
t, we get     
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Substitute C
1
 and C

2
 back to the above equation, the braking distance becomes 
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|}  (19) 

 

Simulation Results and Summary 

The simulation is conducted in Matlab and for illustration purpose a sample program is attached 

in the Appendix.  

Figure 2 shows the braking performance of the bike with initial velocity vo = 60 km/hr and tire-

road coefficient of friction  = 0.8 for full-brake, front-brake, and rear-brake cases. It can be seen 
that the velocities decrease almost linearly due to the fact that the decelerations are nearly 

constants. The nonlinearity in the decelerations is due to the air drag and tire rolling resistance at 

high speeds; however the nonlinearity becomes weaker as the vehicle speed decreases. This 

implies that the effect of air drag and tire rolling resistance may be neglected at low vehicle 

speeds. The braking efficiency is defined as the g-normalized deceleration divided by the tire-

road coefficient of friction  (i.e.  = ag/ = a/g).  With the inclusion of air drag and tire 

rolling resistance, the braking efficiency is slightly greater than unity.  

Figure 3 shows the braking performance of the vehicle with various initial velocities for full-

brake, front-brake, and rear-brake cases. Figure 4 shows the braking performance of the vehicle 

with various tire-road coefficients of friction and an initial velocity of 60 km/hr for full-brake, 

front-brake, and rear-brake cases. Again it can be seen that the decelerations and braking 

efficiencies are affected by the vehicle speed and rolling resistance.  

From the values of decelerations, stop times, braking distances, and braking efficiencies, it is 

necessary to keep the full brakes functional in order to obtain the best braking performance. 
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Based on the nonlinear equation derived from force equilibrium, the closed-form solution for 

determining the velocity, stop time, and braking distance is obtained. With the closed-form 

solution, the estimation of braking performance with various vehicle parameters for full-brake, 

front-brake, and rear-brake cases becomes very straightforward.  
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Figure 2: Braking performance of the bike with initial velocity vo = 60 km/hr and tire-road 

coefficient of friction  = 0.8 for full-brake, front-brake and rear-brake cases (note:  = a/g). 
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Figure 3: Braking performance of various initial velocities for full-brake, front-brake and rear-

brake cases. 

 

 

Figure 4: Braking performance of various tire-road coefficients of friction for full-brake, front-

brake and rear-brake cases. 
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Appendix: Sample Matlab Code 
 

%% closed_form_brake_bike_sample.m 

% Prof. Junghsen Lieh, Wright State University, Ohio - USA 

% junghsen.lieh@wright.edu, December 21, 2012 

clf, clear all; 

m     = 60;    den = 1.218;    Cd = 0.30;      Af = 0.40; 

g     = 9.81;   fo = 0.0136;   f1 = 0.0000005184; 

mu    = 0.8;     h = 0.4;      ha = 0.45;       W = m*g; 

La    = 1.0;    Lb = 0.40;     L  = La + Lb; 

grade = 0;   theta = atan(grade/100); 

fo    = fo*cos(theta);         f1 = f1*cos(theta);  % correction for grade 

% Full Brakes 

s2b1 = m;                                                     s1(1) = s2b1; 

s2b2 = W*(mu*cos(theta) + fo + sin(theta));                   s2(1) = s2b2; 

s2b3 = (den/2)*Cd*Af + f1*W;                                  s3(1) = s2b3; 

% Front Brake Only 

sfb1 = m*(1 - mu*h/L);                                        s1(2) = sfb1; 

sfb2 = W*(mu*(Lb/L*cos(theta)-h/L*sin(theta))+fo+sin(theta)); s2(2) = sfb2; 

sfb3 = (den/2)*(1 - mu*ha/L)*Cd*Af + f1*W;                    s3(2) = sfb3; 

% Rear Brake Only 

srb1 = m*(1 + mu*h/L);                                        s1(3) = srb1; 

srb2 = W*(mu*(La/L*cos(theta)+h/L*sin(theta))+fo+sin(theta)); s2(3) = srb2; 

srb3 = (den/2)*(1 + mu*ha/L)*Cd*Af + f1*W;                    s3(3) = srb3; 

% Closed-form Solution 

kmhr = 60;                % Initial speed, km/hr 

vo   = kmhr*1000/3600;    % Initial speed, m/s 

dv   = -0.02;    npt = floor(abs((vo-0)/dv)); 

to   = 0;         tf = 20;                      dt = tf/npt;  

for jj = 1:3 

  c1     = atan(sqrt(s3(jj)/s2(jj))*vo); 

  c2     = sqrt(s2(jj)*s3(jj))/s1(jj); 

  ts2bT  = s1(jj)/sqrt(s2(jj)*s3(jj))*atan(sqrt(s3(jj)/s2(jj))*vo);  

  ts(jj) = ts2bT;  % Stop time, sec 

% Velocity v(t), m/s 

  v = vo; 

  ii = 0;  t = 0; 

  while t < ts(jj) 

    ii = ii + 1; 

    t    =  to + (ii-1)*dt; 

    v    = sqrt(s2(jj)/s3(jj))*tan(c1-c2*t);      % Velocity at time t, sec 

    dis  = s1(jj)/s3(jj)*(log(cos(c1-c2*t)/cos(c1))); % Braking distance, m 

    a    = -(s2(jj) + s3(jj)*v^2)/s1(jj);             % Deceleration, m/s^2 

    if jj==1,  t2b(ii)=t;  dis2b(ii)=dis;  a2b(ii)=a;  v2b(ii)=v; end  

    if jj==2,  tfb(ii)=t;  disfb(ii)=dis;  afb(ii)=a;  vfb(ii)=v; end 

    if jj==3,  trb(ii)=t;  disrb(ii)=dis;  arb(ii)=a;  vrb(ii)=v; end 

  end 

end 

rt = 3600/1000;  % Convert v from m/s to km/hr 

% Plotting 

subplot(2,2,1) 

  plot(t2b,rt*v2b,  tfb,rt*vfb,  trb,rt*vrb), grid 

    xlabel('Time, sec'),  ylabel('Velocity, km/hr') 

    title(['m=',num2str(m), ' kg, \mu=', num2str(mu),... 

           ', v_o=',num2str(kmhr),' km/hr']) 

    ylim([0 60]), legend('Full brake', 'Front brake', 'Rear brake') 

subplot(2,2,2) 

  plot(t2b,dis2b,  tfb,disfb,  trb,disrb), grid 

    xlabel('Time, sec'),  ylabel('Braking Distance, m') 
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subplot(2,2,3) 

  plot(t2b,-a2b,  tfb,-afb,  trb,-arb), grid 

    xlabel('Time, sec'),  ylabel('Deceleration, m/s^2') 

subplot(2,2,4) 

  plot(t2b,-a2b/(g*mu),  tfb,-afb/(g*mu),  trb,-arb/(g*mu)), grid 

    xlabel('Time, sec'),  ylabel('Braking Efficiency, \eta') 

  

 

 


