Determination of Cycling Speed Using a Closed-form Solution from Nonlinear Dynamic Equations

Junghsen Lieh, PhD
Mechanical \& Materials Engineering
Wright State University, Dayton Ohio 45435 USA
(937) 775-5040 (ph); (937) 775-5009 (fax)
jlieh@cs.wright.edu

Abstract

The theme of this paper is to develop a closed-form method to solve nonlinear equations for cycling speed. The nonlinear equations are derived from force and power balance. The closed-form solution for force equation is straightforward, yet the closed-form solution for power equation is obtained by means of partitioning technique. For simulation purpose, the effect of air drag coefficient, frontal area, rolling resistance, road grade, and power consumption is studied. With the closed-form solution, the evaluation of cycling speed becomes easy.

Introduction

The estimation of vehicle speed has been of interest to researchers (Gillespie, 1992; Wong, 1993; Lieh, 1995). Their studies were concentrated on automotives. A number of researchers investigated the effect of aerodynamics on cycling speed (Whitt and Wilson, 1982; Gross et al., 1983; Kyle and Zahradnik, 1987; Brandt, 1988; Kyle, 1988). However, there is lack of a general closed-form solution for cycling speed; therefore, the estimation of vehicle speed was normally done in a tedious and time-consuming spreadsheet or in a commercial program, such as ADAMS, DADS-3D or VEHSIM. Lieh (2002) indicated that a closed-form method for determining vehicle speed could simply the calculation procedure.

This paper will adopt such a closed-form method. The nonlinear equations for cycling are formulated and expressed in terms of velocity and key vehicle parameters. The integration of these equations is conducted symbolically and is used to compute the maximum value and time history of speed for various cases.

Traction and Resistant Forces

As shown in Figure 1, the major external forces to be overcome by the tire traction force (F_{T}) during cycling are
F_{a}, aerodynamic force
F_{r}, rolling resistance ($F_{r f}+F_{r r}$)
F_{i}, inertia force
F_{g}, gravitational force
The dynamic equilibrium of the system along the longitudinal direction can be written as

$$
\begin{equation*}
F_{T}=F_{a}+F_{r}+F_{i}+F_{g} \tag{1}
\end{equation*}
$$

Sum the moments about point \boldsymbol{A} (without considering the airlift effect), the normal load on the driving wheel is

$$
\begin{equation*}
W_{r}=\frac{W L_{a} \cos (\theta)+F_{a} h_{a}+m h \dot{v}+W h \sin (\theta)}{L} \tag{2}
\end{equation*}
$$

Figure 1: Force balance during cycling.
Define μ_{p} the peak coefficient of tire/road friction, N the normal load on the driving wheel, C_{i} the tire longitudinal stiffness, and S the slip. The tire traction force may be expressed as follows (Wong, 1993):

$$
\begin{equation*}
F_{T}=\mu_{p} N\left(1-\frac{\mu_{p} N}{4 S C_{i}}\right) \tag{3}
\end{equation*}
$$

For the current study, it is assumed that the traction force is near its peak value such that the maximum theoretical speed may be obtained, i.e.

$$
\begin{equation*}
F_{T}=\mu_{p} N \tag{4}
\end{equation*}
$$

Define m the mass of bicycle plus the rider, ρ the air density, C_{d} the air drag coefficient, A_{f} the frontal area, v the forward velocity, θ the grade angle, g the gravity, and f_{0} and f_{1} the rolling resistance coefficients (f_{1} is usually very small but is included here for generality). The air drag, rolling resistance, inertia and gravitational forces can be expressed in the following form (Gillespie, 1992; Wong, 1993):

$$
\begin{align*}
F_{a} & =\frac{\rho}{2} C_{d} A_{f} v^{2} \tag{5}\\
F_{r} & =\left(f_{0}+f_{1} v^{2}\right) W \tag{6}\\
F_{i} & =m \dot{v} \tag{7}\\
F_{g} & =W \sin (\theta) \tag{8}
\end{align*}
$$

Where, $\dot{v}=\frac{d v}{d t}$ and $W=m g$. Substituting these forces into Eqn (1), a nonlinear equation describing the dynamic equilibrium can be written in the following form

$$
\begin{equation*}
s_{1} \dot{v}=s_{2}-s_{3} v^{2} \tag{9}
\end{equation*}
$$

Where, the expressions for s_{i} are

$$
\begin{align*}
& s_{1}=m\left(1-\mu_{p} \frac{h}{L}\right) \tag{10a}\\
& s_{2}=W\left\{\mu_{p}\left[\frac{L_{a}}{L} \cos (\theta)+\frac{h}{L} \sin (\theta)\right]-f_{o}-\sin (\theta)\right\} \tag{10b}\\
& s_{3}=\frac{\rho}{2}\left(1-\mu_{p} \frac{h_{a}}{L}\right) C_{d} A_{f}+f_{1} W \tag{10c}
\end{align*}
$$

Eqn (9) represents the tire traction capability of a bicycle when its power availability is adequate or unlimited. Since the bicycle is a rear-wheel drive system, the rear normal load stated in Eqn (2) is used to determine the traction force, i.e. $N=W_{r}$. The theoretical maximum speed is found by setting $\dot{v}=0$, as a result, Eqn (9) is reduced to

$$
\begin{equation*}
s_{2}-s_{3} v^{2}=0 \tag{11}
\end{equation*}
$$

The maximum speed based on tire traction capability is

$$
\begin{align*}
v_{T m} & =\sqrt{\frac{s_{2}}{s_{3}}} \\
& =\sqrt{\frac{W\left\{\mu_{p}\left[\frac{L_{a}}{L} \cos (\theta)+\frac{h}{L} \sin (\theta)\right]-f_{o}-\sin (\theta)\right\}}{\frac{\rho}{2}\left(1-\mu_{p} \frac{h_{a}}{L}\right) C_{d} A_{f}+f_{l} W}} \tag{12}
\end{align*}
$$

To find the time history of velocity, it requires an integration of Eqn (9). To facilitate the process, the equation is re-arranged as

$$
\begin{equation*}
d t=s_{1} \frac{d v}{s_{2}-s_{3} v^{2}} \tag{13}
\end{equation*}
$$

The symbolic or closed-form integral of Eqn (13) is

$$
\begin{align*}
v & =\frac{\sqrt{s_{2}}}{\sqrt{s_{3}}} \tanh \left[\frac{\sqrt{s_{2} s_{3}}}{s_{1}}\left(t-t_{o}\right)+\tanh ^{-1}\left(\frac{\sqrt{s_{3}} v_{o}}{\sqrt{s_{2}}}\right)\right] \tag{14a}\\
& =v_{T m} \tanh \left[\frac{s_{3}}{s_{1}} v_{T m}\left(t-t_{o}\right)+\tanh ^{-1}\left(\frac{v_{o}}{v_{T m}}\right)\right] \tag{14b}
\end{align*}
$$

Where v_{0} is the initial velocity at time t_{0}. If the bicycle starts from rest, i.e., $v_{o}=0$ at $t_{o}=0$, the velocity can be simplified to

$$
\begin{align*}
v & =\sqrt{\frac{s_{2}}{s_{3}}} \tanh \left(\frac{\sqrt{s_{2} s_{3}}}{s_{1}} t\right) \tag{15a}\\
& =v_{T m} \tanh \left(\frac{s_{3}}{s_{1}} v_{T m} t\right) \tag{15b}
\end{align*}
$$

Power Equation

The above closed-form solution for maximum speed represents the maximum tire traction capability assuming that an adequate or unlimited power can be delivered by the rider. However rider's output is constrained because of human's physical strength. This means Eqn (12) can only be used for motorcycle case. To obtain the maximum speed for a human powered vehicle, the capability of rider's power output has to be considered.

Define P_{T} the rider's total available power. The power transmitted to the rear wheel is modified by the cycling efficiency η

$$
\begin{align*}
P_{w} & =\eta P_{T} \\
& =\left(F_{a}+F_{r}+F_{i}+F_{g}\right) v \tag{16}
\end{align*}
$$

Substituting Eqns (5-8) into Eqn (16) results in a nonlinear differential equation in the following form

$$
\begin{equation*}
\dot{v}=\frac{-1}{m v}\left(r_{1} v^{3}+r_{2} v-r_{3}\right) \tag{17}
\end{equation*}
$$

To facilitate integration, this equation is written as

$$
\begin{equation*}
d t=-m\left(\frac{v d v}{r_{1} v^{3}+r_{2} v-r_{3}}\right) \tag{18}
\end{equation*}
$$

Where the constants are given below

$$
\begin{align*}
r_{1} & =\frac{1}{2} \rho C_{d} A_{f}+f_{l} W \tag{19a}\\
r_{2} & =W\left[f_{o}+\sin (\theta)\right] \tag{19b}\\
r_{3} & =\eta P_{T} \tag{19c}
\end{align*}
$$

It can be seen from Eqn (17) when the bicycle starts from rest, i.e. $v=0$, the equation is singular. This implies that the acceleration can be high when the speed is near zero. Since the equation is very nonlinear, a simple way to integrate is to partition Eqn (18) into

$$
\begin{equation*}
\frac{-r_{1}}{m} d t=\frac{a_{1}}{v+b_{1}} d v+\frac{a_{2} v+a_{3}}{v^{2}+b_{2} v+b_{3}} d v \tag{20}
\end{equation*}
$$

Where $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$ are functions of r_{1}, r_{2}, and r_{3}, and they are determined by the following sequential steps:

Step-1: Calculate b_{2} from the following equation

$$
\begin{equation*}
b_{2}=\frac{1}{6 r_{1}} \sqrt[3]{\left(108 r_{3}+12 \sqrt{\frac{3\left(4 r_{2}^{3}+27 r_{3}^{2} r_{1}\right)}{r_{1}}}\right) r_{1}^{2}}-\frac{2 r_{2}}{\sqrt[3]{\left(108 r_{3}+12 \sqrt{\frac{3\left(4 r_{2}^{3}+27 r_{3}^{2} r_{1}\right)}{r_{1}}}\right) r_{1}^{2}}} \tag{21}
\end{equation*}
$$

Step-2: Calculate b_{1} and b_{3} with

$$
\begin{aligned}
& b_{1}=-b_{2} \\
& b_{3}=b_{2}^{2}+\frac{r_{2}}{r_{1}}
\end{aligned}
$$

Step-3: Calculate a_{1}, a_{2}, a_{3} with

$$
\begin{aligned}
& a_{1}=\frac{b_{2}}{3 b_{2}^{2}+\frac{r_{2}}{r_{1}}} \\
& a_{2}=-a_{1} \\
& a_{3}=2 a_{2} b_{2}+1
\end{aligned}
$$

The symbolic solution or closed-form integral (Dwight, 1985) of Eqn (20) is found to be

$$
\begin{align*}
t= & t_{o}+\frac{m}{r_{1}}\left[\left(\frac{a_{2} b_{2}}{2}-a_{3}\right) \frac{2}{\sqrt{4 b_{3}-b_{2}^{2}}} \tan ^{-1}\left(\frac{2 v+b_{2}}{\sqrt{4 b_{3}-b_{2}^{2}}}\right)-a_{1} L N\left|v+b_{1}\right|\right. \\
& -\frac{a_{2}}{2} L N\left|v^{2}+b_{2} v+b_{3}\right|-\left(\frac{a_{2} b_{2}}{2}-a_{3}\right) \frac{2}{\sqrt{4 b_{3}-b_{2}^{2}}} \tan ^{-1}\left(\frac{2 v_{o}+b_{2}}{\sqrt{4 b_{3}-b_{2}^{2}}}\right) \\
& \left.+a_{1} L N\left|v_{o}+b_{1}\right|+\frac{a_{2}}{2} L N\left|v_{o}^{2}+b_{2} v_{o}+b_{3}\right|\right] \tag{22}
\end{align*}
$$

From Eqn (18), the maximum speed is obtained by setting $\dot{v}=0$. This leads to

$$
\begin{equation*}
v^{3}+\frac{r_{2}}{r_{1}} v-\frac{r_{3}}{r_{1}}=0 \tag{23}
\end{equation*}
$$

The maximum speed based on a given power output is the real root of Eqn (23), which has the same solution as b_{2}, i.e.

$$
\begin{equation*}
v_{p m}=\frac{1}{6 r_{1}} \sqrt[3]{\left(108 r_{3}+12 \sqrt{\frac{3\left(4 r_{2}^{3}+27 r_{3}^{2} r_{1}\right)}{r_{1}}}\right) r_{1}^{2}}-\frac{2 r_{2}}{\sqrt[3]{\left(108 r_{3}+12 \sqrt{\frac{3\left(4 r_{2}^{3}+27 r_{3}^{2} r_{1}\right)}{r_{1}}}\right) r_{1}^{2}}} \tag{24}
\end{equation*}
$$

Simulation Results

The simulation is conducted by varying air drag coefficient, frontal area, rolling resistance coefficient, mass, and road grade.

Figure 2 shows the maximum speed versus power for various major parameters: (a) is for the effect of air drag coefficient C_{d}, (b) is for the effect of frontal area A_{f}, (c) is for the effect of mass m, and (d) is for the effect of rolling resistance coefficient f_{o}.

Figure 3 shows the maximum speed versus power for various road grades and vehicle parameters. It is observed that if the air drag coefficient, front area, and rolling resistance coefficient are low (part (d): $C_{d}=0.2, A_{f}=0.2 \mathrm{~m}^{2}, f_{o}=0.007$), a $60-\mathrm{kg}$ racer can reach $90 \mathrm{~km} / \mathrm{hr}$ on a flat road and $30 \mathrm{~km} / \mathrm{hr}$ on a 9%-grade road if he can deliver 500 watts of power. However, if the air drag coefficient, front area, and rolling resistance coefficient increase, for example $C_{d}=0.35, A_{f}=0.35 \mathrm{~m}^{2}, f_{o}=0.013$ in Part (a), the maximum speed can only reach $58 \mathrm{~km} / \mathrm{hr}$ on a flat road and $18 \mathrm{~km} / \mathrm{hr}$ on a 9%-grade road.

For computing the time history of velocity, it requires to use Eqn (14) at the beginning then switch to Eqn (22) when the power of cycling is balanced. Figure 4 shows the velocity versus time for the case of $C_{d}=0.3, A_{f}=0.3 \mathrm{~m}^{2}, f_{o}=0.011, m=60 \mathrm{~kg}$. It can be seen that the velocity can reach $42 \mathrm{~km} / \mathrm{hr}$ in 30 seconds if the rider can deliver 250 watts on a flat road (or $60 \mathrm{~km} / \mathrm{hr}$ for 500 watts). However, for the same time period and the same power output, the velocity can only reach $15 \mathrm{~km} / \mathrm{hr}$ on a 9%-grade road (or $28 \mathrm{~km} / \mathrm{hr}$).

Summary

Based on the nonlinear equations derived from force and power equilibrium, closed-form solutions for determining cycling speeds are obtained. With the closed-form solutions, the estimation of maximum speeds becomes straightforward. And the evaluation of vehicle performance under the influence of vehicle parameters (such as air drag, frontal area, power, mass, and rolling resistance) becomes simple and easy.

References

Brandt, Jobst, 1988, "Headwinds, Crosswinds and Tailwinds: A practical Analysis of Aerodynamic Drag," Bike Tech, August, Vol. 5, pp. 4-6.

Dwight H.B., 1985, Tables of Integrals and Other Mathematical Data, Macmillan: New York.
Gillespie T.D., 1992, Fundamental of Vehicle Dynamics, Society of Automotive Engineers.

Gross, Albert C., Kyle, Chester R. and Malesvicki, Douglas J., 1983, "The Aerodynamics of Human-Powered Land Vehicles," Scientific American, December, pp. 126-134.

Kyle, Chester R. and Zahradnik, Fred, 1987, "Aerodynamic Overhaul, Streamline Your Body and Your Bike," Bicycling, June, pp. 72 - 79.

Kyle, Chester R., 1988, "How Wind Affects Cycling," Bicycling, May, pp. 194-204.
Lieh, Junghsen, 1995, "The Development of an Electric Car," SAE Future Transportation Technologies, Electric and Hybrid Electric Vehicles-Implementation of Technology, SP-1105, Paper No. 951903, pp. 47-58.

Lieh, Junghsen, 2002, "Closed-form Solution for Vehicle Traction Problem," Journal of Automotive Engineering, 2002, Vol. 216, No. D12, pp. 957-963.

Whitt, Frank R. and Wilson, David G., 1982, Bicycling Science, Cambridge, London.
Wong J.Y., 1993, Theory of Ground Vehicles, John Wiley \& Sons.

Figure 2: Maximum speed ($v_{p m}$) vs. power for various vehicle parameters, on a flat road ride.

Figure 3: Maximum speed ($v_{p m}$) vs. power for various road grades and cycling parameters.

Figure 4: Velocity vs. time for various road grades (given: $C_{d}=0.3, A_{f}=0.3 m^{2}, f_{o}=0.011, m=60 \mathrm{~kg}$).

