Human Power eJournal

PDF version of article 01, issue 01

Algebraic Determination of Land HPV Velocity

John Snyder June 21, 2004

Abstract

A method to solve for velocity when power is known.

Introduction

The following equations are intended for exploring how different Human Powered Vehicle (HPV) drag parameters in conjunction with a constant power input influence the velocity result. These calculations depend on several assumptions: a constant rate of travel occurring in a forward linear direction, a zero or positive (uphill) slope, and no wind present.

Discussion

The total power required to propel a land HPV at a constant velocity is easily calculated when the sum of losses and gains is also known [reference1]. Solving for velocity posses a slightly greater challenge.

In the equation depicting power due to aerodynamic drag [equation 1], Cd is the aerodynamic drag coefficient, A is the vehicle's reference area, air density is the local current air density, and velocity represents the vehicle's ground speed when traveling through still air.

$$Power_{aero} = \frac{Cd \cdot A \cdot air \ density \cdot velocity^3}{2}$$
 [equation 1]

Because velocity is presented as a number to the third power finding its value, when unknown, requires manipulating a "depressed" cubic equation of the form:

$$X = Y \cdot v^3 + Z \cdot v$$
 [equation 2]

The cubic formula was "first published by Girolamo Cardano (1501-1576) in his Algebra book Ars Magna" [reference 2]. By applying several ingenious substitutions and observations Cardano made it possible to solve for velocity by employing the better-known quadratic formula as an intermediate step.

Method

To determine velocity begin by collecting values for the following inputs (S.I. unit): effective drag area, Cd·A (m²); current local air density, air density (kg/m³); combined rider and vehicle mass, mass (kg); local acceleration of gravity, g (m/s²); coefficient of

rolling resistance on the local surface, Crr (N/N); roadway slope, slope (radians); input power to drive train, power (watts); and drive train efficiency, efficiency (decimal).

Perform the following intermediate steps. Conclude by solving for velocity (m/s).

 $K = \frac{2 \cdot \text{mass} \cdot \text{g} \cdot [\text{sine}(\text{slope}) + \text{Crr}]}{\text{Cd} \cdot \text{A} \cdot \text{air density}} \quad [\text{equation 3}]$ $L = \frac{2 \cdot \text{power} \cdot \text{efficiency}}{\text{Cd} \cdot \text{A} \cdot \text{air density}} \quad [\text{equation 4}]$ $M = \frac{-\text{L} + \sqrt{\text{L}^2 + \frac{4}{27} \cdot \text{K}^3}}{2} \quad [\text{equation 5}]$ $N = M^{1/3} \quad [\text{equation 6}]$ $O = \frac{\text{K}}{3 \cdot \text{N}} \quad [\text{equation 7}]$

velocity = O - N [equation 8]

Results

velo_eq.xls										
	A	В	С	D	Е	F	G	Н		
1	LAND) HPV VEI	OCIT	Y					-	
2	Z J.C. Snuder, 2002-2004									
3										
4	INPUTS									
5	Cd·A	air density	mass	g	Crr	slope	Power	Efficiency		
6	<u>0.25</u>	<u>1.20</u>	<u>80.00</u>	<u>9.81</u>	<u>0.0030</u>	<u>0.00</u>	<u>250.00</u>	0.95		
7	(m^2)	(kg/m^3)	(kg)	(m/s^2)	(N/N)	(radians)	(watts)	(decimal)		
8										
9										
10	INTERMEDIATE STEPS SOLUTIC						N			
11	K	L	M	N	0	velocity				
12	15.70	1583.33	0.09	0.45	11.66	11.21	40.34	25.07		
13						(m/s)	(km/h)	(mph)		
14	Cell contents of velo_eq.xls presented in text format.									
15	"A12=C6*D6*(SIN(F6)+E6)/(A6*B6*0.5)"									
16	"B12=G6*H6/(A6*B6*0.5)"									
17	"C12=(-B12+SQRT(B12^2+4/27*A12^3))/2"									
18	"D12=C12^(1/3)"									
19	"E12=A12/(3*D12)"									
20		"F12=E12-D12"								
21										
K () N velo_eq									• //	

[Illustration]: Screen capture of spreadsheet velo_eq.xls

Concluding Remarks

As presented, this handling allows input only of a non-negative slope value. Notice that the determination of the value of "M" is the adaptation of the quadratic formula to a cubic equation.

References

1. Snyder, John. 2000.CdA and Crr measurement. Human Power.51:9-13

2. Khamsi, Mohamed. Kanust, H. and Marcus, N. 2002. The "Cubic Formula". Math Medics, L.L.C. . Available from URL: <u>http://www.sosmath.com/algebra/factor/fac11/fac11.html</u>

Supplemental File

Excel format spreadsheet: velo_eq.xls (20 KB)

Disclosure Statement

The author is an associate editor of Human Power eJournal.

Human Power eJournal